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0. Introduction 
Recently I was commissioned by Strategic Teaching to review four high-school 

mathematics programs for the Washington State Board of Education (SBE).i These programs 
were identified by the Office of the Superintendent of Public Instruction (OSPI) as matching 
well to the content in Washington’s standards. The review is aimed at the mathematical 
soundness of the programs and is to be used by the SBE to inform the OSPI’s curriculum 
recommendations. The programs examined are: Core-Plus Courses 1, 2, and 3; Discovering 
Algebra, Geometry, and Advanced Algebra; Holt Algebra 1, Algebra 2, and Geometry; and 
Glencoe Algebra 1, Algebra 2, and Geometry. The examination focused on two topics in 
algebra, forms of linear functions and equations and forms of quadratic functions and equations, 
and one topic in geometry, parallel lines and the Triangle Sum Theorem. These topics were 
chosen because they are viewed as central to the high school curriculum. The examination was 
to ensure they are coherently developed, completely covered, mathematically correct, and 
provide students a solid foundation for further study in mathematics.   

The algebraic concepts and skills associated with linear functions are crucial for the rest 
of the study of algebra and beyond. Appropriate definitions and justifications for concepts like 
coefficient and slope provide the basis for understanding linear functions and equations. These 
issues were carefully examined, as were the presence of all forms of linear functions and 
equations, how these are connected to each other, and the opportunities given to the students to 
apply them to solve problems. Two particular Washington standards were used as a reference 
point: 

A1.4.B   Write and graph an equation for a line given the slope and the y-intercept, the 
slope and a point on the line, or two points on the line, and translate between 
forms of linear equations. 

A1.1.B  Solve problems that can be represented by linear functions, equations, and 
inequalities.  

The ability to put quadratic functions in vertex form allows students to use symmetry and 
to find the maximum or the minimum of the function. This opens up a new world of problems 
the student can solve, namely max/min problems. The approach to max/min problems is 
examined for both the basic algebra and the conceptual development, which includes a coherent 
definition of a quadratic function and how the line of symmetry is explained and justified. Two 
Washington standards were used as guideposts: 

A2.3.A  Translate between the standard form of a quadratic function, the vertex form, 
and the factored form; graph and interpret the meaning of each form. 

mailto:harel@math.ucsd.edu


2 
 

A2.1.C  Solve problems that can be represented by quadratic functions, equations, and 
inequalities. 

The development and application of the Triangle Sum Theorem (that the sum of the 
angles of a triangle is 180 degrees) was examined. This includes the postulate and the many 
concepts and relations that lead up to the proof of the theorem. For example, the theorem 
depends on a solid understanding of parallel lines, the lines that cross them, and the angles 
associated with them all. In particular, the examination focused on the coherence and logical 
progression of the material leading up to the theorem. The Washington standard that guided the 
evaluation was: 

G.3.A  Know, explain, and apply basic postulates and theorems about triangles and the 
special lines, line segments, and rays associated with a triangle. 

The task was to examine the mathematical soundness of the programs in relation to the 
aforementioned five standards. Pedagogy, per se, was not considered. I used the following 
criteria for mathematical soundness:  

1. Mathematical justification 
• Are central theorems stated and proved? 
• Are solution methods to problems, conditions, and relations justified? 
• Does the program develop norms for mathematical justification, where students 

gradually learn that empirical observations do not constitute justifications, 
though they can be a source for forming conjectures?   

2. Symbolism and structure 
• Does the program emphasize algebraic manipulations and reasoning in general 

terms?  
• Is there an explicit attempt to help students organize what they have learned into 

a coherent logical structure?  
• Does the program attend to crucial elements of deductive reasoning, such as 

“existence” and “uniqueness,” “necessary condition” and “sufficient condition,” 
and the distinction among “definition,” “theorem,” and “postulate?” 

3. Language 
• Is the language used clear and accurate?  

The issue of structure is particularly critical in the case of geometry. It is perhaps the only 
place in high-school mathematics where a (relatively) complete and rigorous mathematical 
structure can be taught. Deductive geometry can be treated in numerous ways and in different 
levels of rigor. My examination is based on the view that an adequate level of rigor is necessary 
and possible in high-school. Deciding what constitutes an “adequate level of rigor” is crucial. In 
dealing with this question, I used Euclid’s Elements as a framework. In a program consistent 
with this framework, subtle concepts and axioms, such those related to “betweeness” and 
“separation,” are dealt with intuitively, but the progression from definitions and axioms to 
theorems and from one theorem to the next is coherent, logical, and exhibits a clear mathematical 
structure. Furthermore, such a program would sequence its instructional unit so that neutral 
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geometry—a geometry without the Parallel Postulate—precedes Euclidean geometry—a 
geometry with the Parallel Postulate.    

My examination of the programs focused mostly on these three issues—mathematical 
justification, symbolism and structure, and language—but I also attended to two other aspects of 
the programs: the problems assigned for practice and internalization and the way new concepts 
are introduced. For this, I used the following two criteria. 

4. Problems assigned  
• Does the text include a relatively large number of nontrivial multi-step holistic 

problems?  
5. Introduction of new concepts 

• Are new concepts intellectually motivated? 
A holistic problem refers to a problem where one must figure out from the problem 

statement the elements needed for its solution—it does not include hints or cues as to what is 
needed to solve it. A non-holistic problem, on the other hand, is one which is broken down into 
small parts, each of which attends to one or two isolated elements. Often each of such parts is a 
one-step problem. The programs were examined as to whether their instructional units include a 
relatively large number of non-trivial, multi-step holistic problems.  

Generally speaking, intellectual motivation, or intellectual need, refers to problematic 
situations through which new concepts and ideas emerge in mathematics.ii In this review, I 
focused on whether problems used to introduce a new concept demonstrate the intellectual 
benefit of the concept at the time of its introduction. For example, some texts introduce the idea 
of using equations to solve word problems through trivial, one-step addition or multiplication 
word problems. This approach is contrived, and is unlikely to intellectually motivate this idea 
since students can easily solve such problems with tools already available to them.iii 

Some might argue that these two criteria belong to pedagogy, not mathematics, and so 
they should not be used to assess the mathematical soundness of the programs. My view is that 
the two criteria are both pedagogical and mathematical. Concerning the first criterion, while 
there definitely is a place in a textbook for non-holistic problems, it is essential that the text 
includes a relatively large number of holistic, non-trivial problems, because it is the latter kind 
that students will encounter in college mathematics and beyond, in professional careers where 
mathematics is used.  

Concerning the second criterion, contrived solutions are alien to mathematical practice. 
New ideas in mathematics are not created to solve trivial, known problems; rather, new ideas in 
mathematics are created to tackle new, non-trivial problems or to solve old problems more 
efficiently. Using trivial problems to introduce new ideas would likely leave the student and 
teacher confused as to why one would apply a more general line of reasoning when a simpler one 
will do. Once a new idea is created out of a need to solve problems not solvable, or not easily 
solvable, with current tools, it is advantageous and necessary to examine the applicability of the 
idea to known problems. When students realize that old problems are part of a larger family of 
problems—that all are solvable by the same new tool—their understanding of mathematical 
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structure and mathematical efficiency is advanced. Algebraic representation of word problems 
and the systematic way of solving equations is an example of such a tool in algebra; and the 
standard multiplication and division algorithms are an example of such a tool in arithmetic.  

My examination, thus, focused on whether each of the above five standards was 
addressed thoroughly and the mathematical soundness of the program in relation to these 
standards. To make the report self contained, most of the issues discussed in the report are 
accompanied with direct quotes from the texts. [The quotes appear with a smaller font in order to 
make them distinguishable from the rest of the narrative.] References to the exact locations in the 
text are also provided. Both the Student’s Edition and the Teacher’s Edition served as the source 
material for the examination; unless it is indicated otherwise, the page numbers refer to the 
Student’s Edition.  

The examination of a particular standard focused on units that seemed most relevant to 
that standard. Occasionally, however, it was necessary to review content outside these core units, 
specifically when a particular concept in the core unit required an understanding of fundamental 
concepts from other units. Core units from different programs that are relevant to a particular 
standard usually differ in the material they cover. For example, some units on linear functions 
include the concept of absolute value, others do not; some deal with particular applications, 
others do not. Also, corresponding units differ in the sequencing of their material. For these 
reasons, the report is not uniform across the four programs with respect to the material covered. 
The report is, however, uniform in the criteria applied to examine the programs.         

The report is organized around five sections. The first four sections correspond to the 
four programs—Core Plus, Discovering, Glencoe, and Holt—in this alphabetical order. Each 
section is comprised of four subsections. The first three subsections examine, respectively, the 
three aforementioned sets of standards: A1.4.B, A1.1.B for linear functions; A2.3.2, A1.1.D for 
quadratic functions; and G.3.A for geometry. The fourth subsection is a summary of the overall 
mathematical soundness of the respective program. Each section is completely independent of 
the rest. The fifth, and last, section discusses the overall conclusions drawn from the 
examination.          

1. Core Plus 

Core-Plus’ content presentation is unusual in that its instructional units, from the start to 
the end, are composites of problems. With a few exceptions, the problems are word problems 
involving “real-life” situations, and typically they consist of a sequence of tasks about such a 
situation. To review the program, it was necessary to go through all the problems in the core 
units and their corresponding materials in the Teacher’s Edition; in some cases it was also 
necessary to examine the distributions of the problems over different aspects of a particular 
standard. 
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1.1 Forms of Linear Functions and Equations 
A1.4.B Write and graph an equation for a line given the slope and the y-intercept, the slope 

and a point on the line, or two points on the line, and translate between forms of lin
equations. 

ear 

it 
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n  of the algebraic form

A1.1.B Solve problems that can be represented by linear functions, equations, and 
inequalities.  

Linear functions in Core Plus are treated in Course 1, Unit 3 (pp. 150-236). The un
includes a large number of problems whose solutions require the representation of linear 
functions, equations, and inequalities. Many of the problems are formulated and sequenced so as
to convey the contextual (e.g., “rate of change”) and graphical meanings of linear functions and 
their ingredients (i.e., the coefficient of the fu riable and the function’s constant term  
as well as the mea ing  y mx b= +  as an input-output rule: for each input x , 
there is an output y .  

The problems—almost with no exception—involve “real life” context. Problem 2 (p. 
152), for example, is about credit card sales involving the equation, 40 2C n= + . The meaning 
of the coefficient 2 and the constant term 40 are dealt with in this particular context. Likewise, 
Problem 3 (p. 153) deals with pay plans for credit card applications. It asks about the geometric 
and con
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 (p. 173), and Problem 21 (p. 177) are related to Item 3. Problem 
5 (p. 16
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holistic nature of the mathematical problems students are likely to encounter in the future. 

textual meanings of the constant terms and coefficients in particular linear equations.      
Standard A1.4.B can be broken down into four items: (1) write and graph an equation f

a line given the slope and the y-intercept; (2) write and graph an equation for a line given the 
slope and a point on the line; (3) write and graph an equation for a line given two points on the 
line; and (4) translate between [algebraic] forms of linear equations. While the four items are of 
equal importance, problems related to the last three items usually are more demanding than tho
related to the first item. However, while the text addresses all the items, the distribution of its
problems across the items is not uniform. The following sample exemplifies the distribution 
density: Problem 3 (p. 153), Problems 5 and 6 (p. 155), Problem f (p. 157), and Problem 3 an
(p. 159) can all be interpreted as addressing Item 1. Problem 28 (p. 179) is related to Item 2. 
Problem 9 (p. 171), Problem 12

0) is related to Item 4.  
There is enough material in the text to convince the students empirically that a line

plane is represented by a linear equation, and that the graph of a linear equation is a line. 
er, these two fundamental theorems on linear functions are not justified mathematically.
As the subtitle of the Core-Plus series indicates (Contemporary Mathematics in Context), th

entire curricular material—with a negligible number of exceptions—is given in a context of 
“realistic problems and applications” that involve particular expressions and equations. “Context 
free” problems and problems dealing with general algebraic forms of linear functions, equations, 
or inequalities are rare. Also absent from the text are “holistic” problems—problems that are n
broken down into different parts—where one needs to figure out from the problem statement 
what elements are needed to solve the problem. The text excels in its mission to contextualiz
mathematics taught but falls short on conveying the abstract nature of mathematics and the
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The use of calculators, tables of data, graphs, and algebraic rules (functions) sometimes 
all appear in different parts of the same problem. Here, too, the text excels in providing ample 
experience in the application of each of these tools in solving problems involving linear 
equations and inequalities. The overall conclusion from these experiences, however, is that one 
tool appears as good as the others. The advantage of a general algebraic approach over the other 
approaches in logical deduction is not demonstrated sufficiently.      

1.2 Forms of Quadratic Functions 
A2.3.A  Translate between the standard form of a quadratic function, the vertex form, and the 

factored form; graph and interpret the meaning of each form. 
A2.1.C  Solve problems that can be represented by quadratic functions, equations, and inequalities. 

The quadratic function is dealt with in three places: Course 1, Unit 7; Course 2, Unit 5; 
and Course 3, Unit 2. Unit 7 in Course 1 begins with physical situations modeled by quadratic 
functions, followed by a sequence of problems about the physical meanings of the different parts 
of the modeling functions (e.g., the physical meanings of  and  in as 
initial height and initial upward velocity, pp. 465-6). Following this, the lesson turns to the shape 
and location of graphs of functions in the form

0h 0v 2
0 16oh h v t t= + −

2y ax= . The symmetry of the graph and the 
relationship between the sign of a  and the form of the graph are explained and correctly justified 
in the Teacher’s Edition (p. T474) but not in the Student’s Edition. Likewise, the relation 
between the graphs of 2y ax=  and 2y ax c= +

2

 are explained and correctly justified in the 
Teacher’s Edition (p. T475) but not in the Student’s Edition. The symmetry and concavity of the 
graphs of functions in the forms y ax bx= + and 2y ax bx c= + + are only demonstrated with 
special cases, not justified mathematically.  

The second lesson in Unit 7 (Course 1) deals with equivalent quadratic expressions and 
the quadratic formula. There are problems on how to bring different expressions to the standard 
form 2y ax bx c= + +  or the factored form.  The quadratic formula is given without proof in 
Course 1. The proof appears in Course 2 as a homework problem (Problem 41, p. 355) and again 
in Course 3 (p. 353). 

Quadratic functions are revisited in Course 2, Unit 5. Relevant to the standards under 
examination are the problems on how to expand an expression in factored form into an 
expression in standard form (e.g., Problem 2 and 6, p. 337) and how to transform an expression 
in standard form into a factored form (e.g., Problems 9-11, pp. 338-9). The translation from the 
standard form to the factored form is done in cases where the roots are integers. The factorization 
is done by comparing the coefficients of the factored form to the coefficients of the standard 
form. However, this is done only in a particular case ( 2( )( ) 5x m x n x x 6+ + = + + ), not in the 

general case ( ). The theorem that any quadratic function with roots 
can be expressed in factored form is demonstrated with special cases but not proved.  

2( )( )d x m x n ax bx c+ + = + +

Course 3, too, deals with quadratics (in Unit 3). The unit begins, in Lesson 1, with 
inequalities and number-line representations of solutions to inequalities. Lesson 2 deals with 
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quadratic inequalities. The solution approach suggested in the lesson’s problems is to determine 
the solution by the shape of graph and x -intercepts (when they exist). The relations between the 
coefficients of the general form 2y ax bx c+= + and the shape of the graph remain without proof 
in this Unit. As I mentioned earlier, these relations are dealt with in Course 1 only for the forms 

2y ax= and 2y ax b= + .     

1.3 Geometry 
G.3.A Know, explain, and apply basic postulates and theorems about triangles and the special lines, 

line segments, and rays associated with a triangle. 
The examination of this standard was done by looking closely at the organization and 

coherence of the mathematics associated with it, and, in particular, the mathematical progression 
of the geometric material that leads to the proof of the Triangle Sum Theorem. The assertion that 
the sum of the angles for a triangle is 1800 –a central theorem in Euclidean geometry—appears 
as a homework problem (in the On-Your-Own Section; Problem 13, Course 3; p. 45), and is not 
labeled “Theorem.” Students are reminded of this assertion, which was developed empirically in 
previous courses. The students are guided as to how to proceed with the proof of the assertion, 
and the Teacher’s Edition provides the details of the proof (p. T45). To discuss the mathematical 
development that leads up to the proof of the assertion, it is necessary to present the structure of 
the proof as it appears in the Teacher’s Edition and trace the problems in the text that include the 
necessary elements for the proof. The proof consists of four steps: 

1. From the vertex B  of triangle ABC  construct a line  parallel to the sidek AC
HJJG

. 
2.  and CB  are transversals to the line  and the side AB k AC

HJJG
.  Each of the sides  

and CB  create a pair of alternate angles with k  and 
AB

AC
HJJG

.  
3. The two alternate angles in each of these pairs are congruent.  
4. The sum of the measures of the three angles of the triangle is equal to the sum 

of the measures of the three angles 
ABC

DBA∠ , ABC∠ , and CBE∠  (where B  is 
between and ). D E

As can be seen, the proof uses three postulates; they all appear earlier in the text: 
• The Linear Pair Postulate: If two angles are a linear pair, then the sum of their measures is 1800. (p. 31)   
• The Parallel Line Postulate: In a plane, two lines cut by a transversal are parallel if and only if 

corresponding angles have equal measures. (p. 38) 
• The Angle Addition Postulate: If  is a point in the interior ofP ABC∠ , then 

.(p. 45)   m mABP PBC∠ + ∠ = m ABC∠
The first two postulates appear in Investigation 1 and Investigation 2, respectively, and the third 
postulate appears as a homework problem (On-Your-Own Section, Problem 13). The 
construction referred to in the first step of the proof was established earlier (Problem 4, p. 33, 
and Problem 8a, p. 39). The construction of a line  parallel to a given line  and goes through 
a given point is carried out by first constructing a perpendicular line t  to  through , and 
then, again, constructing  perpendicular to t  through . The conclusion that  is based on 
the IF part of the Parallel Line Postulate. There are two issues to examine here: (a) the 

l m
mP P

l P ||l m
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justification for why this construction leads to  and (b) the justification for the construction 
of perpendicularity and for its uniqueness. 

||l m

1L

Regarding the justification for why the construction given leads to , there are enough 
problems to establish this claim from the IF part of the Parallel Line Postulate; hence, we can say 
that the claim in the third step of the above proof is established. As to the construction of 
perpendicularity, this was not justified. Moreover, the way the material is sequenced, it cannot be 
justified. This is because the justification for the construction requires congruence of triangles, 
which appears in earlier courses but mostly in empirical, not deductive, forms. Congruence 
appears later, after parallel lines, and is based on similarity, which, in turn, is based on parallel 
lines. Thus, the construction that is fundamentally needed for parallel lines can only be justified 
by results that are based on parallel lines!  

||l m

Uniqueness of perpendicularity—another critical theorem—appears much later, toward 
the end of the lesson and in the homework section (On-Your-Own, Problem 24). The proof is 
based on the result established in Problem 13, that the sum of the angles of a triangle is 180, 
which, in turn, is based on the Parallel Postulate. In this treatment, unlike in the treatment of the 
construction of perpendicular lines, there is no circularity. There is, however, a loss of 
opportunity to differentiate between two mathematical structures. With a different sequencing of 
the material—faithful to the historical development of geometry—uniqueness of 
perpendicularity can be proved without the parallel postulate. The proof is simple and is based on 
the Exterior Angle Theorem (An exterior angle of a triangle is greater than either remote interior 
angle), which, in turn, is based on the congruence axioms, not the Parallel Postulate. In the text, 
the Exterior Angle Theorem appears—again—as a homework problem (On-Your-Own, Problem 
15, p. 46), and is derived from the Triangle Sum Theorem, which, in this text, is based on the 
Parallel Postulate.    

In the Teacher’s Edition, it is stated that the Parallel Line Postulate is “functionally 
equivalent” (p. T38) to Euclid’s Fifth Postulate:       

Euclid’s Fifth Postulate: If two lines  and  are cut by a transversal  and the sum of the two interior 

angles  and 

1L L
A B  on the same side of that transversal is less than two right angles, then lines  and  

meet on the side of angles  and 
1L 1L

A B . (p. T38)  
This equivalency is not proved. On the same page, the text also states: “The Parallel Line Postulate 
[as stated in the text] is also equivalent to the following statement …”: 

Playfair’s Postulate: Given a line and a point not on the line, there is exactly one line parallel to the original 
line that passes through the point.  

The equivalency is not shown. However, later On-Your-Own Problem 25 (p. 49), a skeleton for a 
proof of Playfair’s Postulate is given. The proof is based on the ONLY IF part of the Parallel 
Line Postulate. 

Taking the Student’s Edition and the Teacher’s Edition together, I found the logical 
development of the material associated with this standard, if there was an intention to present 
one, hard to follow. One reason for this difficulty is that the development of the material is 
scattered among many problems, some are based purely on empirical observations and some on 
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logical deduction. It is impossible to know when one is allowed to reason empirically and when 
deduction is required.  

Of course, multiplicity of problems is both needed and advantageous. However, the 
problems as presented do not lead to a clear logical structure of the material. Consider, for 
example, Problem 13, 22, and 25. Problem 13 deals with the Angle Sum Theorem; Problem 22 
deals with spherical geometry, where the sum of the angles in a spherical triangle is greater than 
1800; and Problem 25 deals with the assertion that there is a unique line parallel to a given line 
through a point not on it.  While the assertions in Problem 13 and 25 are essential to the 
mathematical development of a deductive structure for parallel lines, Problem 22 is neither 
proved nor essential to this structure. This is not to say there is no place for Problem 22. 
However, these three problems, and the rest of the problems in the text, seem to have the same 
“structural status.” Problem 13 is in a section called Connection, whereas the rest are in a section 
called Extension. Thus, Problem 22 on spherical geometry appears to have the same structural 
status as Problem 24 on uniqueness of perpendicularity and Problem 25 on uniqueness of 
parallels. 

In all, it is not clear which assertions are to be proved and which are not, and which are 
needed for the deductive progressions and which are not. Only one who knows the development 
in advance is likely to identify a deductive structure for the material from the set of problems in 
the lesson. And to identify such a structure, it is necessary to go over the entire set of problems, 
including the homework problems. If, for example, one skips Problem 24 on uniqueness of 
perpendicularity, an important piece of the structure would be missing. Similarly, Problems 13, 
22, and 25 appear as homework problems and yet they are needed for the development of a 
logical progression. Furthermore, even if all the problems are assigned and solved correctly, 
without a guide as to how these problems, together with some problems from the lesson, form a 
logical structure, it is difficult, if not impossible, to organize the material within a deductive 
structure.  

1.4 Summary 
The decisive majority of the algebra problems are about physical situations or particular 

functions (where the coefficients are numbers). An adequate number of problems connect the 
slope and intercept with contextual or geometric meanings. However, problems dealing with 
general forms of equations and inequalities are rare. The advantage of general algebraic 
approaches over the other approaches (the use of tables, graphs, and calculators, for example) in 
logical deduction is not clear. Except for the quadratic formula, fundamental theorems on linear 
functions and quadratic functions are not justified. This includes the theorems: A line in the 
plane is represented by a linear equation, and the graph of a linear equation is a line; The graph 
of 2y ax bx c= + +  is symmetric; The shape of the graph of 2y ax bx c= + +  is determined by 
the coefficients, , , and . The latter theorem is used without proof to solve quadratic 
inequalities. The theorem that any quadratic function with roots can be expressed in factored 
form is neither stated nor proved. The translation from the standard form to the factored form is 
done in special cases, mostly where the roots are integers. The distribution of the algebra 

a b c
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problems across different elements of the standard about translating among different forms of the 
linear function is not uniform; some elements receive more attention than others.  

Like in the algebra texts, the geometry text does not lead to a clear logical structure of the 
material taught, and there is no clear development of a demarcation line between empirical 
reasoning and deductive reasoning. Furthermore, while some problems are essential to the 
development of a geometric structure, others are not. However, all the problems in the text seem 
to be of equal status. For a teacher to help students discern the essential mathematical 
progression, he or she must identify all the critical problems—many of which appear in the 
homework sections—and know in advance what the intended structure is. Missing one or two of 
these problems would result in an incomplete or deficient structure.  

Important theorems in geometry are not justified. Moreover, with the way the material is 
sequenced, some of these theorems cannot be justified. Also, due to the program’s choice of 
starting with parallel lines rather than congruence, there is loss of an opportunity to convey a 
critical mathematical lesson about the role of postulates in the development of mathematical 
structures—that a whole constellation of theorems can be proved without the use of the parallel 
postulates. This lesson—a landmark in the historical development of mathematics—can and 
should be within the grasp of high-school students.   

The mathematical language used throughout the program is accurate and concepts and 
ideas usually emerge from non-contrived problems. However, holistic problems, where one 
needs to figure out from the problem statement what elements are needed to solve the problem, 
are rare both in algebra and geometry. The program excels in providing ample experience in 
solving application problems and in ensuring that students understand the meanings of the 
different parts of the modeling functions. The program also excels in its mission to contextualize 
the mathematics taught. However, it falls short on conveying the abstract nature of mathematics 
and the holistic nature of the mathematical problems students are likely to encounter in the 
future. 

1.4 Summary 
Core-Plus’ content presentation is unusual in that its instructional units, from the start to 

the end, are composites of problems. With a few exceptions, the problems are word problems 
involving “real-life” situations, and typically they consist of a sequence of tasks about such a 
situation. To review the program, it was necessary to go through all the problems in the core 
units and their corresponding materials in the Teacher’s Edition; in some cases it was also 
necessary to also examine the distributions of the problems over different aspects of a particular 
standard. 

The decisive majority of the algebra problems are about physical situations or particular 
functions (where the coefficients are numbers). An adequate number of problems connect the 
slope and intercept with contextual or geometric meanings. However, problems dealing with 
general forms of equations and inequalities are rare. The advantage of general algebraic 
approaches over the other approaches (the use of tables, graphs, and calculators, for example) in 
logical deduction is not clear. Except for the quadratic formula, fundamental theorems on linear 
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functions and quadratic functions are not justified. This includes the theorems: A line in the 
plane is represented by a linear equation, and the graph of a linear equation is a line; The graph 
of 2y ax bx c= + +  is symmetric; The shape of the graph of 2y ax bx c= + +  is determined by 
the coefficients, , , and . The latter theorem is used without proof to solve quadratic 
inequalities. The theorem that any quadratic function with roots can be expressed in factored 
form is neither stated nor proved. The translation from the standard form to the factored form is 
done in special cases, mostly where the roots are integers. The distribution of the algebra 
problems across different elements of the standard about translating among different forms of the 
linear function is not uniform; some elements receive more attention than others.  

a b c

Like in the algebra texts, the geometry text does not lead to a clear logical structure of the 
material taught, and there is no clear development of a demarcation line between empirical 
reasoning and deductive reasoning. Furthermore, while some problems are essential to the 
development of a geometric structure, others are not. However, all the problems in the text seem 
to be of equal status. For a teacher to help students discern the essential mathematical 
progression, he or she must identify all the critical problems—many of which appear in the 
homework sections—and know in advance what the intended structure is. Missing one or two of 
these problems would result in an incomplete or deficient structure.  

Important theorems in geometry are not justified. Moreover, with the way the material is 
sequenced, some of these theorems cannot be justified. Also, due to the program’s choice of 
starting with parallel lines rather than congruence, there is loss of an opportunity to convey a 
critical mathematical lesson about the role of postulates in the development of mathematical 
structures—that a whole constellation of theorems can be proved without the use of the parallel 
postulates. This lesson—a landmark in the historical development of mathematics—can and 
should be within the grasp of high-school students.   

The mathematical language used throughout the program is accurate and concepts and 
ideas usually emerge from non-contrived problems. However, holistic problems, where one 
needs to figure out from the problem statement what elements are needed to solve the problem, 
are rare both in algebra and geometry. The program excels in providing ample experience in 
solving application problems and in ensuring that students understand the meanings of the 
different parts of the modeling functions. The program also excels in its mission to contextualize 
the mathematics taught. However, it falls short on conveying the abstract nature of mathematics 
and the holistic nature of the mathematical problems students are likely to encounter in the 
future. 

2. Discovering  

2.1 Algebra: linear functions, equations, and inequalities 
A1.4.B  Write and graph an equation for a line given the slope and the y-intercept, the slope and 

a point on the line, or two points on the line, and translate between forms of linear 
equations.  

A1.1.B  Solve problems that can be represented by linear functions, equations, and inequalities. 
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The Discovering Algebra book devotes two chapters to linear equations (Chapters 3 and 
4), a total of 115 pages. There are numerous examples and activities throughout the chapters. 
Almost 60 pages into these chapters and the slope formula—the mathematical meaning of the 
coefficient b in —is yet to be presented. When the formula is eventually presented in 
Section 4.3, it is not justified. The text presents the slope formula (p. 218) but no mathematical 
justification is given as to why for any two points on a line with coordinates

y a bx= +

1 1( , )x y and 2 2( , )x y

the ratio 2 1

2 1

y y
x x
−
−

  and is equal b. Sixteen pages later, the Point-Slope Form,

1

is fixed

1( )y y= sented (p. 235). But this form, which could have been derived easily 

from 

b x+ x− , is pre

1y y
x x
− eralized from a particular case (pp. 234-5) but is not justified.  

1

=
−

b , is gen

In these 115 pages, the text does not justify two fundamental theorems on linear 
functions: that a line in the plane is represented by a linear equation, and that the graph of a 
linear equation is a line. In different places and in different contexts these theorems are 
demonstrated empirically.   

There are numerous problems and activities on linear function, equations, and 
inequalities (the latter is in Chapter 5). A common approach throughout the text is to present the 
problems and material through small steps in the form of sequences of tasks, what I labeled in 
the introduction as non-holistic problems. This presentation is not mathematical in two respects. 
First, it makes it difficult to discern the underlying ideas of the content taught. The multitudes of 
activities and prescribed steps mask the big ideas underlying linear functions, equations, and 
inequality. The difficulties in discerning a structure is on two levels: local, within a particular 
lesson, and global, across an instructional unit. Second, consistently the text generalizes from 
empirical observations without attention to mathematical structure and justifications. This 
empirical-without-proof approach is not unique to the unit on linear function; rather, it is 
prevalent throughout all the units that have been examined. I have already mentioned this 
approach in dealing with the theorems about a line in the plane and its equation. The following is 
another example, and more examples will be given as the report unfolds.  

The “Investigation” on Page 159 presents three figures of composite equilateral triangles 
made from toothpicks. Students are asked to continue building this pattern of figures out of 
actual toothpicks and determine the perimeter of each figure. In essence, the solution provided by 
the text amounts to generating a list of perimeters and recognizing from this list alone the rule for 
finding the perimeter. In doing so, one is freed from the need to recognize the underlying 
mathematical structure of the rule—that, for example, a reason the perimeter of a given figure 
(the nth term in the sequence) is one toothpick greater than the perimeter of its predecessor (the 
(n-1)th term in the sequence) is that the nth figure is constructed by adding 2 toothpicks to the    
(n-1)th figure but only one of these two toothpicks is a side of the new figure. This mathematical 
reasoning is lost when the focus is on the outcome values of the perimeters rather on 
understanding the structure of the pattern. This approach is reinforced in Problem 2 (p. 161).  
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Many of the activities require the use of calculator. Some of these activities are good; 
others are not. Here are some examples: The text starts the chapter on linear equations with 
recursive sequences. The first example to illustrate the definition of recursive sequence is about a 
25-story building. It includes a table with two rows—the first row gives floor number and the 
second the height (in ft) of that floor, with some of the values in the table missing (p. 158). The 
task is to find each of these missing values. The solution provided in the text uses calculator:  

Press -4 (ENTER) to start your number sequence. Press +13 (ENTER). … How high up is the 10th floor? 
Count the number of times you press ENTER until you reach 10. Which floor is at a height of 217 ft? Keep 
counting until you see that value on your calculator screen. 

The use of calculator in this case would likely free the student from the need to infer logically 
that any nth term in the sequence can be determined from the first term and the recursion rule, 
and that given any term in the sequence, one can logically infer its location in the sequence by 
knowing the first value of the sequence. Section 3.2, on the other hand, makes good use of 
calculator. It nicely demonstrates in calculator language the symbolic representation of the 
relationship between two neighboring items in a recursive sequence: “To use the rules to get the next 
term[s] in the [two] sequence[s], press {Ans(1)+1, Ans(2)+13}” (p. 165). This is a precursor to the linear 
relation: . The authors plot on the calculator screen position versus value of terms in 
the sequence, and draw the students’ attention to critical geometric features of the graph: “The 
points appear to be in a line” and later “… to get the next point on the graph from any given point, 
move right 1 unit on the x-axis and up 13 units on the y-axis.”  

1n na a d−= +

Although the text makes repeated use of the calculator “recursive routine” (e.g., Ans(1)+1, 
Ans(2)+13, etc.), it does not connect this routine to its mathematical form: , at least 
not in these chapters, and the relation between the “recursive routine” and the equation, 

1n na a d−= +

y a bx= + , 
which is treated in Section 3.4, is vague at best.  

2.2 Forms of Quadratic Functions  
A2.3.A  Translate between the standard form of a quadratic function, the vertex form, and the 

factored form; graph and interpret the meaning of each form. 
A2.1.C  Solve problems that can be represented by quadratic functions, equations, and inequalities. 

Quadratic function is dealt with in two different books: Algebra (Lessons 9.1-9.7) and 
Advanced Algebra (Lessons 7.1-7.4). In both books crucial mathematical theorems appear 
without justification. Since the treatments are similar, I will focus on the Advanced Algebra 
book, since it is where a more rigorous approach is expected.  

Important ideas about quadratic function are generalized from empirical observations and 
remain without proof; the following are examples: 

Example 1: On Page 371, the text states: 
You now know three different forms of a quadratic function 

General 2y ax bx c= + +  

Vertex form 2( )y a x h k= − +  

Factored form 1 2( )( )y a x r x r= − −  
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Equivalency among these three forms is demonstrated empirically but it is not justified 
mathematically.  

Example 2: The text asserts the  (in the vertex form) is the vertex of the parabola: ( , )h k

This form, 2( )y a x h k= − +
)h k

, is called the vertex form of a quadratic function because it identifies the 

vertex, ( ,  …  (p. 368) 

This assertion is not justified.  
Example 3: In an earlier section (Lesson 4.4, p. 194) the text states:  

Parabolas always have a line of symmetry that passes through the vertex________.  
This statement is not proved. Nor does the text prove the fact that the line x h=  is a line of 
symmetry of 2( )y a x h k= − +

2

. Even a simpler assertion (on the same page) that the line of 

symmetry of y x=  is the line  is not proved. This is surprising since the text devotes a lot 
of space to transformations of graphs. A proof of this simple assertion together with the 
translation of a function is all what is needed to establish the line of symmetry for quadratic 
functions.  

0x =

Example 4: The text asserts (p. 378): 
If you know the x-intercept of a parabola, then you can write the quadratic function in factored form, 

1 2( )( )y a x r x r= − − . 

This assertion is not justified. The text devotes a lesson (Lesson 7.8) to division of polynomials, 
which is a natural place to prove this assertion. However—surprisingly and disappointedly—the 
text does not revisit this important assertion to prove it. 

Example 5: The text uses the equivalency between the general form and the vertex form, 
which has not been established, to derive the Quadratic Formula )p. 386). On the other hand, this 
formula is derived correctly in the Algebra book (pp. 531-2), with the omission of the c

0a ≠ , in Step 3. 
ondition,

In addition to these five inadequacies in dealing with quadratic functions, the text does 
not address explicitly some mathematically important properties of the parabola. Specifically, the 
vertex form provides critical information about the relationship between the sign of a  (the 
coefficient of 2x ) and the form of the parabola, as well as the location of the extreme value (max 
or min). These derivations are absent from the text.  

Quadratic inequalities are not treated in the text.    
I will conclude with an additional example to further demonstrate how this program 

promotes empirical reasoning rather than deductive reasoning: The first example on Quadratics 
(p. 361) is the following problem: 

Find a polynomial function that models the relationship between the number of sides and the number of 
diagonals of a polygon. Use the function to find the number of diagonals of a dodecagon (a 12-sided 
polygon). 

The solution provided sketches polygons with an increasing number of sides: a triangle, 
quadrilateral, pentagon, and hexagon. A list is then made that depicts the number of sides and the 
corresponding number of diagonals in each polygon. These values are obtained by simple 
counting. Following this, the authors take the second differences in the sequence of the number 
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of diagonals, which turned out to be constant. From this, the text asserts without proof that if the 
second differences of a pattern are constant, the pattern is quadratic, and so the pattern observed 
must be of the form: 2y ax bx c= + +  ( x  is the number of sides and  is the number of 
diagonals). Following this, the text determines the coefficients  by solving a linear system 

of three equations with three unknowns and find the function sought to be: 

y
c, ,a b

20.5 1.5y x x= − . 
As we have seen in the previous section, here too students learn to approach problems 

empirically. The pattern observed with a limited number of cases is assumed to continue for all 
cases. Furthermore, a theorem about the relation between the second differences of a pattern and 
the form of the pattern is only illustrated empirically. Of course there is a place for this beautiful 
problem, but the approach should be deductive. It is all right to approach a problem empirically, 
but it is incumbent on the text to push for justifications. This example demonstrates how the text 
promotes empirical reasoning even in a place where a proof is readily available and is within the 
grasp for high-school students. Here is such a proof: In a polygon with x vertices, if we draw all 
the possible diagonals emanating from each vertex, we get ( 3)x x −  diagonals. Note, however, in 
this way each diagonal is counted twice; hence, the number of the diagonals in a polygon with x  
vertices is: 2( 3) / 2 0.5 1.5x x x− = − x . 

2.3 Geometry 
G.3.A Know, explain, and apply basic postulates and theorems about triangles and the special lines, 

line segments, and rays associated with a triangle. 
Judging the Discovering geometry text from the viewpoint I indicated in the introduction 

to this report, I found this program mathematically inadequate: The text is about empirical 
observations of geometric facts; it has little or nothing to do with deductive geometry.          

As was mentioned, the Triangle Sum Theorem (The sum of the angles for a triangle is 
180 degrees) was selected to examine Standard G.3.A. This theorem, which the text calls 
“Triangle Sum Conjecture,” is presented on Page 201. Since most of the assertions in the text appear 
as conjectures—some are “proved,” and some are not—it is impossible to judge the soundness of 
the proof provided. In particular, there is no clear logical development in the text from which I 
could judge whether the proof of the “Triangle Sum Conjecture” (p. 202) is complete:  

On Page 201, an auxiliary line EC
HJJG

parallel to AB  (in triangle ) is constructed. Two 
fundamental ideas about the constructability and uniqueness of such a line are not addressed in 
the proof. The constructability requires the Exterior Angle Theorem (“An exterior angle of a 
triangle is greater than either remote interior angle of the triangle.”), which is independent of the 
Parallel Postulate. I was unable to find this theorem in the book. The uniqueness of the parallel 
line is needed for the claim that the alternate angles are equal (

ABC

1 4mm∠ = ∠  and , p. 
202). In the text, however, these equalities are derived from the Alternate Interior Angles 
Conjecture. But is this conjecture a postulate or a theorem? Just because it was not proved in the 
text, it does not mean it is a postulate; numerous other conjectures are stated without proof. 

3 5m m∠ = ∠

For the sake of completeness, I should mention that later, on Page 218, there appears the 
Triangle Exterior Angle Conjecture: The measure of an exterior angle of a triangle _____.  The 
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blank is to be filled with the statement “is equal to the sum of the measures of the remote interior angles.” 
(Teacher’s Edition, p. 218). While one can infer the Exterior Angle Theorem from the Triangle 
Exterior Angle Conjecture, structurally, the former is independent of the latter: the Exterior 
Angle Theorem is independent of the Parallel Postulate, whereas the Triangle Exterior Angle 
Conjecture requires it.  

All assertions appear in the form of conjectures; a few are called properties (e.g., the 
“Parallel Slope Property” and the “Perpendicular Slope Property” on Page 167). Most of these 
conjectures are not proved. It is difficult, if not impossible, to systematically differentiate which 
of the conjectures are postulates and which are theorems. It is difficult to learn from this text 
what a mathematical definition is or to distinguish between a necessary condition and sufficient 
condition. Thus, for example, the assignment on Page 64 to “write a good definition” of different 
terms and the classification of quadrilaterals on Page 83 are intuitive at best. 

The last chapter (Chapter 13) is labeled “Geometry as a Mathematical System.” After almost 
700 pages of mostly empirical geometry, the book attempts to introduce a mathematical system. 
Unfortunately, the development of the material in this chapter is too brief to do so. Assertions in 
this chapter rely on assertions in the previous 12 chapters, which, as was claimed earlier, are not 
developed within a logical structure.  

The Corresponding Angles Postulate in this chapter (p. 697) is a theorem, not a postulate: 
The first part of the “Postulate” (“If two parallel lines are cut by a transversal, then the corresponding angles 
are congruent.”) is a theorem based on the Parallel Postulate (p. 696), the Angle Duplication 
Postulate (p. 696), and the Exterior Angle Theorem. The converse of the “Postulate” (“If two 
coplanar lines are cut by a transversal forming congruent corresponding angles, then the lines are parallel.”) is 
based on the Vertical Angle Theorem and the Exterior Angle Theorem.  

2.4 Summary 
The text does not justify fundamental theorems on linear and quadratic functions. In 

different places and in different contexts these theorems are demonstrated empirically.  A 
common approach throughout the text is to present the problems and material through non-
holistic problems, which mask the big ideas intended for students to learn. Consistently the text 
generalizes from empirical observations without attention to mathematical structure and 
justifications. There is nothing wrong with beginning with particular cases to understand 
something and make a conjecture about it. In many cases it is advantageous to do so and 
sometimes even necessary. However, students need to learn the difference between a conjecture 
generated from particular cases and an assertion that has been proved deductively. Unfortunately, 
the demarcation line between empirical reasoning and deductive reasoning is very vague in this 
program.  

The approach the program applies to geometry is similar to that applies to algebra. It, too, 
amounts to empirical observations of geometric facts; it has little or nothing to do with deductive 
geometry. There is definitely a need for intuitive treatment of geometry in any textbook, 
especially one intended for high-school students. But the experiential geometry presented in the 
first 700 pages of the book is not utilized to develop geometry as deductive system. Most, if not 
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all, assertions appear in the form of conjectures and most of the conjectures are not proved. It is 
difficult, if not impossible, to systematically differentiate which of the conjectures are postulates 
and which are theorems. It is difficult to learn from this text what a mathematical definition is or 
to distinguish between a necessary condition and sufficient condition.  

3. Glencoe 

3.1 Forms of Linear Functions and Equations 
A1.4.B Write and graph an equation for a line given the slope and the y-intercept, the slope 

and a point on the line, or two points on the line, and translate between forms of lin
equations. 

ear 

s in 
 of these chapters, the 

mathem

near equation 
and the

nto 

following comprehensive set of examples, all from Algebra 1, supports these claims:  

of change indicates an increase over time. A negative rate of change indicates that a quantity 

And on
 between any pair of points 

s referred 
to. Furt finition for “rate of change of a function.” 

The slope of a non-vertical line through any two points, 

A1.1.B Solve problems that can be represented by linear functions, equations, and 
inequalities.  

The material in Glencoe that is relevant to Standards A1.4.B and A1.1.B appear
Algebra 1 (Chapters 2-5) and Algebra 2 (Chapters 1-2). In each

atical integrity of the content taught is compromised.  
Important theorems on linear functions are not proved. Relevant to the above two 

standards are two fundamental theorems: A line in the plane is represented by a li
 graph of a linear equation is a line. Neither of these theorems is proved.  
Critical mathematical ideas, some of which are needed for these theorems, are turned i

prescribed rules, and clumsy, imprecise, and even wrong statements are not uncommon. The 

Example 1: On Page 171, we find: 
A positive rate 
is decreasing.  
 the same Page we find: 
A rate of change is constant for a function when the rate of change is the same
on the graph of the function. Linear functions have a constant rate of change. 

No justification is given to these shoddily formulated, yet important, ideas. Also, note the 
asymmetry between the two statements: while “positive rate of change” refers to change over time, 
“negative rate of change” refers to a decreasing quantity, without indicating what quantity i

hermore, nowhere in the text is there a de
Example 2: On Page 173, we find: 

 m 1 1( , )x y  and 2 2( , )x y , can be found as 

follows: 2 1y ym
2 1x x−
−

. 

And on

 points

=

 Page 237-8, we find: 
Parallel lines have the same slope.  
The slopes of perpendicular lines are opposite reciprocals.  

No justification is given as to why the above ratio is constant for any choice of  1 1( , )x y  

and 2 2( , )x y . Likewise, the last two theorems are stated without justification. 
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Example 3: There are two definitions for absolute value in the text, one geometric ( a  is 

the distance of the number a  from zero) and one algebraic ( x x=  if , and 0x ≥ x x= −  if  

, Algebra 1, p. 262). There is no explanation about the connection between the two 
definitions. Worse, no use is made of the algebraic definition to solve equations and graph 
functions involving absolute values. Immediately following this definition, the text presents an 
example (Example 3) of how to graph the function

0x <

( ) 4f x x= − . One would expect that in this 

example the algebraic definition of absolute value would be used to conclude that this function 
consists of two piecewise linear functions (the term “piecewise-linear function” appears two 
pages earlier, on Page 261), and so, to graph the function one would need no more than four 
points. Instead, no reference to the definition is made and the function is graphed by making a 
table consisting of eight points ( , ( ))x f x . 

Example 4: On Page 161, we find: 
The solution or root of an equation is any value that makes the equation true. A linear equation has at most 
one root. You can find the root of an equation by graphing its related function. To write the related function 
for an equation, replace 0  with ( )f x . 

Following this, the text shows how to “solve an equation with one root” and how to “solve an equation 
with no solution.” For the latter, the text offers two methods. Method 1, labeled “solve algebraically,” 
is illustrated by the equation, 3 7 3 1x x+ = + . The equation is manipulated, leading to 6 0= . 
Following this, it is stated:  

The related function is . The root of a linear equation is the value of ( ) 6f x = x  when . Since ( ) 0f x =
( )f x  is always equal to , this equation has no solution.  6

Students get this convoluted explanation as to why the equation 3 7 3 1x x+ = +  has no solution, 
rather than a straightforward, logical justification that utilizes what has been taught earlier. By 
now, from the treatment in the first half of Chapter 1 (Algebra 1), the students (should) know 
that for any choice of x , 3x  is a number, and that if two different numbers, say,  and b , are 
added to a number , then  is different from 

a
c c a+ c b+ . These two facts is all what is needed to 

conclude that there is no x  for which 3 7 3 1x x+ =

6 0

+ . Of course, this straightforward 
justification cannot be given in cases when the equation is more complex. For this, one would 
need the concept of equivalent equations. On Page 81, this concept is described, but strangely it 
is not used here to explain why the result =  entails that the original equation has no solution.  

Careless or wrong formulations are prevalent in the text. Many statements in the text are 
hard to understand and many do not make sense. Here are a few examples.  

Example 5: On Page 104, we find under “Key Concept [of] Absolute Value Equations:” 
Words:  When solving equations that involve absolute values, there are two cases to consider: 

Case 1:  The expression inside the absolute value symbol is positive. 
Case 2:  The expression inside the absolute value symbol is negative.  

Symbol: For any real numbers a  and , if b a b= , then a b=  or a b= −  

To begin with, when solving equations that involve absolute values, there are three cases to 
consider, not two. The third case is that the expression inside the absolute value symbol is zero. 
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Second, the Symbol Statement is not a translation of the Words Statement. The Symbol 
Statement is implied from the definition of absolute value, which is not shown.  

Example 6:  On Page 153, we find three descriptions for “linear equation:”  
(1) “A linear equation is an equation that forms a line when it is graphed”; 
(2) “Linear equations are often written in the form Ax By C+ = ”; and  

(3) “The standard form of a linear equation is Ax By C+ = , where ,  and 0A ≥ A B  are not both zero, 

and , A B , and  are integers with greatest common factor of 1.”  C
To begin with, the third description is wrong: 2 3x y 1+ =  is a linear equation in the standard 
form and yet  is not an integer. Second, it is true that any linear equation with rational 
coefficients can be brought to the form described in (3). However, nowhere in the text is there an 
explanation as to how and why this is the case. Third, and particularly critical, is that either (1) or 
(2) is a definition, but not both. Once one is chosen as a definition, the second must be a 
theorem. This critical fact is entirely absent from the text. To clarify, I am not saying that the text 
should have shown the logical equivalency between these definitions—that if we accept one as a 
definition, then the other is a theorem. What I am saying is that it is expected from a 
mathematical text to deal with this important topic by stating a clear definition of linear function 
(preferably the definition in (2) but with more precise formulation) and then prove that the graph 
of a linear equation is a line. The text fails to address this significant relation. 

A

Example 7:  On Page 172, we find: 
For the rate of change to be linear, the change in x-value must be constant and the change in y-value must 
be constant.  

It is difficult to comprehend this statement. I assume that by linear rate of change it is meant that 
2

2 1

( ) ( )1f x f x
x x
−
−

 is constant for all 1x  and 2x  in the domain of f . If so, the condition “the change in 

x-value must be constant and the change in y-value must be constant” makes no sense.  
Example 8:  On Page 214, we find a “definition” of “slope-intercept form”: 
An equation of the form , where m  is the slope and b  is the -intercept, is the slope-

intercept form. 
y mx b= + y

The clause “where  is the slope and  is the -intercept” does not belong to the definition. That  
is the slope and b  is the 

m b y m
y -intercept is a theorem to be proved.  

Example 9: On Page 31, we find the following statement: 
A mathematical statement that contains two algebraic expressions and a symbol to compare them is an 
open sentence. A sentence that contains an equal sign, =, is an equation.  
     

3x 7+         3 7 1x 3+ =                                                           expression equation 
 

And later on Page 83: 
“To solve an equation means to find the value of the variable that makes the equation true. 

A student reading first statement may/should ask: What is the difference between “sentence” and 
“open sentence?” Is an equation an open sentence? Is a number an expression? There is no guide 
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for the student or the teacher to answer these questions. Assume that the student concludes from 
this statement the correct answers: that an equation is an open sentence and a number is an 
expression. Then, he or she will also conclude that 13=13, 3>4, and 17<25 are all open 
sentences, for they are “expressions [with] a symbol to compare them.” Obviously, this is not true: 
these are sentences but not open sentences. Furthermore, since an equation is an open sentence, 
the phrase “an equation is true” is not up to the standard of proper mathematical language.  

Example 10: On Page 103, we find the following statement: 
Expressions with absolute values define an upper and lower range in which a value must lie. 

I cannot make sense of this sentence. What is meant by upper or lower range? Doesn’t any 
algebraic expression define a range? If this is what is meant, what is the purpose of this 
statement? Likewise, the purpose of the sentence that follows, “Expression involving absolute value can 
be evaluated using the given value for the variable,” is not clear: isn’t it the case that any expression, not 
only those involving absolute value, can be evaluated using a given value for the variable in the 
expression? 

Throughout the text, new concepts are introduced through contrived problems and 
solution approach used for these problems is alien to mathematical practice. Consider the 
following examples: 

Example 11: Chapter 2 of Algebra 1, entitled Linear Equations, is about “writing 
equations.” The text’s general approach to translating a word problem into an equation is by literal 
translation of sentences in the problem. Earlier, on Page 6, the text prescribes key words for the 
translation; for example, “more than” corresponds to “addition;” “less than” to “subtraction;” and “of” 
(when a fraction is involved) to “multiplication.” The use of key words is explicitly prescribed. On 
Page 206, for example, we find the text’s “strategies for reading math problems:” To “identify relevant 
facts [in the problem statement], … look for keywords to solve the problem.” A mathematically mature 
person—and the goal of any mathematics text should be to help students become such persons—
would make sense of a word problem, build a coherent image of the situation described in the 
problem, and accordingly represent the problem algebraically. The approach adopted in this text 
is not consistent with this mathematical way of thinking.    

Example 12: The use of “equation” in the start of the Chapter 2 on writing equations—
when students are first introduced to this very important topic—is contrived. The first problem 
introduced (p. 75) is a simple division problem: if the distance around a track is 2.5 miles and 
one completes 500 miles driving around the track, the number of laps made around the track is 
simply . Instead, the students are told to go through the following steps: 500 2.5 200÷ =

Words      The length of each lap times the number of laps is the length of the race 
Variable      Let l represent the number of laps in the race 
Equation                 2.5   ×   l  =       500 

Similarly, example 2 on Page 76 is a simple division problem that can be solved by dividing 
180,000 into 45,000. Rather, the text directs the students to set a variable d and, like the above 
example, translates a verbal statement into the equation, 45,000 180,000d =i . Further, the 
introduction of this critical material is not through problems that require the use of equations. 
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Rather, it is through the translation of statements for the sake of translation, not for the sake of 
solving problems.  
2.2 Forms of Quadratic Functions 
A2.3.A   Translate between the standard form of a quadratic function, the vertex form, and the 

factored form; graph and interpret the meaning of each form. 
A2.1.C   Solve problems that can be represented by quadratic functions, equations, and inequalities. 

The material in Glencoe that is relevant to Standards A2.3.A and A2.1.C appears in 
Algebra 1 (Chapters 8 and 9) and Algebra 2 (Chapter 5). Here too, like in the case of linear 
functions, the content presentation is mathematically unsound. 

Important theorems on quadratic functions are not proved. Relevant to the above two 
standards are fundamental theorems about equivalencies among the three forms of quadratic 
functions—the standard form, the vertex form, and the factored form—and the relationships 
between the coefficients of the quadratic 2ax bx c+ +  and the shape of its graph (i.e., concavity, 
line of symmetry, and extrema). Neither of these theorems is proved. The quadratic formula is 
given on Page 558 without justification. The proof appears in Algebra 2 (p. 296) with the 
omission of a significant condition: that the coefficient a  of 2x  must be non-zero (in order to 
divide by a ). This might be just a typo. However, this is not an isolated case. Likewise, 
factorization of quadratic functions (p. 485) appears, from some mysterious reason, under the 
title “Arithmetic Sequence.” While this, too, might be a typo, it adds to the overall carelessness of 
this text. Careless and even wrong statements are not uncommon in this text, and critical 
mathematical ideas, some of which are needed for the above theorems, are turned into prescribed 
rules. The compromising of mathematics in the chapters on quadratic function is as severe as in 
the chapter on linear functions. Here are some examples: 

Example 1: On Page 493 (Algebra 1) we find: 
To factor trinomials of the form 2ax bx c+ + , find two integers,  and m p , with a sum of b and a 

product of . Then write  as ac 2ax bx c+ + ax2 mx px c+ + + , and factor by grouping.   

This rule was generalized from a particular case as follows: 
You can also use the method of factoring by grouping to solve this expression [ ].   22 5x x+ + 3

3Step 1 Apply the pattern  2 22 5 3 2x x x mx px+ + = + + +
Step 2 Find two numbers that have a product 2 ⋅ 3 or 6 and sum of 5. 

What does it mean to solve an expression? In what sense is 2 22 5 3 2x x x mx px 3+ + = + + +  a 
pattern? Beyond these careless formulations, there is no explanation as to why the product of m  
and p  should be 6. The factorization shown earlier on Page 485 deals with a different 

structure—that of 2 ( )( )x bx c x m x p+ + = + +
2ax bx c+ +

. Rather than showing algebraically how the 

factorization of   can be done, the authors turn it into a rule with no justification. The 
500 pages preceding this page should have been sufficient to provide the necessary mathematical 
basis to complete the factorization in a few steps such as: If 0ac ≠ and there exist  and m p for 
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which  and , then b m p= + ac mp= 2ax bx c+ + = 2 ( )ax m p x c+ + + 2ax mx px c= + + +

2( ) acmx
m

= + + (ax x )c+ ( 1) ( 1)+
a ax c x
m m

= + +mx ( )( 1)amx c x
m

= + + . 

Example 2: On Page 525 (Algebra 1) we find:  
Standard form  2( )f x x=  
Type of Graph  Parabola 
Axis of Symmetry / 2x b= − a  
y-intercept: 

 
c

e graph of a
  

When 0a > 2x, th  opens um. bx c+ +
 of 2ax bx

upward. The lowest point on the graph is the minim

When , the, the graph c0a < + +  opens downward. The highest point on the graph is the 
maximu he maximum or min ertex. 
les related to these facts are prescribed on Pa

m. T
ru

er

imum is the v
More 

numb

ges 528, with no mathematical justification. 
 Example 3: On Page 296 (Algebra 2) we find a table that includes four rules for the 

 of roots of the equation 2 0ax bx c+ + =  (where a , b , c  are real  numbers a 0a ≠ ) 
for the kinds of these roots (rational, irrational, or comple ). h following are the first two 
rules: 

and 

If  and c s a has 

If c  is no
a ts. 

The a ou  are im
out 

x  T e 

ect square, then the e

perfect square, then t

ant; they are used in

Rule 1: 

Rule 2: 

ssertions ab

2 4 0b ac− >
 rational ro

s two irratio

2 4b a−  i perf

t a 

port

quation 2ax bx c+ +

he equation 2ax bx+ +

 graphing quadratic 

0=  
two ots. 

2 4 0b ac− >  and 2 4b a− 0c =  
h nal roo
t the number of roots

functions and solving quadratic equation. Neither of these rules is justified. The assertions ab
the kinds of roots—rational or irrational—are wrong. For the first rule, take the equation

2 13 1 0x x+ + = . The discriminant is a perfect square ( 2 4 13 4 9 3b ac 2− = − = = ) and the roots 

are irrational ( 13 3

u
2

− ±  ). For the second rule, sim

, and m ltiply it by any irrational num

ply take a

ber, say, 

ny equation with rational roots, say, 

2 3 2 0x x+ + = 2 . The discriminant of the 
2equation 2 3 2 2x x+ +  

bers, -1 and -2. Further

rs can be modele

des on 
wing. 

What i hat are the qu titative relations that 

mple 5: On Pa
an object to hit th ound if it is dropped  feet, 

you would need to solve the equation h

2 0=  is 2, which is not a perfect square, but th oots of the equation
are rational num more, even if the text stated different, correct rules it is 
not clear what functions such rules would have in the mathematical context of this text. 

Example 4: On Page 493 (Algebra 1) we find: 

e r

d by the expression

ow long a rider ri

are being modeled by the 

from an initial height of h

At amusement parks around the country, the paths of ride
216 5 120t t− + . Factoring this expression can help the ride operators determine h

the initial s
s exactly being modeled? W an

e gr

expression 216 5 120t t− + ? And how does factorization help determining the initial swing time? 
Exa ge 505 
To find about how long it takes 0

2
016h t= + . 
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There i

not 

A Know, explain, and apply basic postulates and theorems about triangles and the special lines, 
line segments, and rays associated with a triangle. 

 is relevant to Standards G.3.A appears in Geometry 

and so 
l 
e 

 

me slope if and only if they are parallel. All vertical lines are parallel 

This is rst 
could b ms of 

s no mention of the initial velocity. Further, the equation to be solved is 2
00 16t h= − + , 

2
016t h+ . h =

3.3 Geometry 
G.3.

The material in Glencoe that
(Chapters 3 and 4). The treatment of this material in this text is almost identical to that in Holt, 

the report below is similar to the report for Holt. 
Section 3-1 (p. 171) starts with definitions and illustrations of basic terms such as paralle

lines, parallel planes, and angle pairs formed by a transversal. Section 3-2 (p. 178) starts with th
Corresponding Angles Postulate: “If two parallel lines are cut by a transversal, then the pairs of 
corresponding angles are congruent”. This is followed by practice problems on how the postulate is 
used to compute different angles.  

Sections 3-3 and 3-5 (pp. 186-204) digress to analytic geometry about lines and slopes.
We find here the following two postulates (yes, they are called postulates in this text): 

Two nonvertical lines have the sa
Two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Vertical and 
horizontal lines are perpendicular.  
a pure misuse of the concept of postulate. Both of these assertions are theorems. The fi
e proved by using material already presented in the text; specifically, by using syste

equations, it can be (easily) shown that two linear equations, 1 1y m x b= + and 2 2y m x b= + , 

intersect if and only if 1 2m m≠ . The second assertion can be proved by congruence, a concept 
which appears later in the text. Even so, the assertion should n led a he
could have indicated th eorem will be proved later or just wait until congruence is done 
and then prove it.  

Section 3-5 (p. 205) starts with the Converse of the Corresponding Angles Postulated: “If 
two lines are cut by a transversal so that corresponding angles are congruent, then the two lines are parallel”. (The
importa

ot been cal postulate. T  text 
at the th

 

parallel

wing 
tulate] guarantees that this line is the on

So the construction of
turn, is

h 

nt condition that lines are coplanar is missing.). Following this, the construction of a 
 line to a given line through a point is shown. This construction involves the duplication 

of an angle, and is followed by the Parallel Postulate (p. 206): “If given a line and a point not on the 
line, then there exists exactly one line through the point that is parallel to the given line.” This postulate is 
preceded by the following statement: 

The construction establishes that there is at least one line through C that is parallel to AB
HJJG

. The follo
postulate [the above Parallel Pos ly one. 

 the parallel lines is established by the duplication of an angle, which, in 
 established by congruence. Congruence, however, does not appear until later in Chapter 
end result is that the Parallel Postulate is not a postulate but a theorem de4. The rivable (throug

a simple proof by contradiction) from the Corresponding Angles Postulate. The concern about 
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this presentation is the lack of mathematical accuracy and the lack of attention to the distinction
between a “postulate” and a “theorem.”  

Lastly, the sequencing of the ge

 

ometric topics in the text, while mathematically legitimate, 
depriv

s 

on 

m 

of the chapters on linear functions and quadratic functions, the mathematical 
integrit

s and 

, 

Section 4-2) does 
not incl

4. Holt 

4.1 Forms of Linear Functions and Equations 
ven the slope and the y-intercept, the slope and 

A1.1.B  ms that can be represented by linear functions, equations, and inequalities. 

(Chapte

es the students from the opportunity to deal with important mathematical ideas. I have 
already mentioned the sequencing of the three postulates in Section 3-2 and 3-3. While there i
no circular reasoning in the text, one would expect that when an angle is duplicated to construct 
parallel lines students and teachers are alerted that this construction requires justification, and 
that such a justification will appear later in the text. The same concern applies to the constructi
of perpendicular lines (p. 213). Uniqueness of perpendicularity is critically needed for the 
definition of “distance from a point to a line” (p. 213), and it can be proved from the Triangle Su
Theorem, which appears later (p. 244). However, the text presents the uniqueness of 
perpendicularity as a postulate (p. 213)—another misuse of the term postulate.  

3.4 Summary 
In each 
y of the content taught is consistently compromised. This manifests itself in different 

ways. First, with one exception, none of the important theorems about linear functions and 
quadratic functions is proved. Second, solutions to problems and assertions about condition
relations appear in the form of prescribed rules, and in some cases the rules are wrong. Third, 
there is an abundance of imprecise, even wrong, descriptions of concepts and problems. Fourth
many problems are contrived, and non-trivial, holistic problems are rare. Solutions to problems 
also are often contrived and alien to mathematical practice. Some of the material in Algebra 2 is 
a repetition of that in Algebra 1, with no improvement on any of these points.  

The development that leads up to the proof the Triangle Sum Theorem (
ude circular reasoning. However, there is repeated misuse of the concept of postulate and 

some important theorems are stated without proof. In addition, this development is interrupted by 
two sections on analytic geometry, with theorems that are either incorrectly labeled as postulates 
or appear without proof. In the process of developing a deductive structure for synthetic 
geometry, the students are introduced to a “foreign object” which does not belong to the 
development of this structure. 

A1.4.B  Write and graph an equation for a line gi
a point on the line, or two points on the line, and translate between forms of linear 
equations.  
Solve proble

The material in Holt that is relevant to Standards A1.4.B and A1.1.B appears in Algebra 1 
rs 5 and 6).  
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There is no clear definition of linear function in the text. The text states several properties 
of linear functions, but never justifies relationships among them or how these properties are 
entailed from a definition of linear function. In Section 5-1, Page 296, we find the statement:  

A function whose graph forms a straight line is called a linear function. 
Since this is the first characterization of linear function, we may assume it is the text’s definition. 
On Page 298, we find another characterization of linear equation: 

A linear equation is any equation that can be written in the standard form ax by c+ = .  
No justification is given as to why a function whose graph is a line has this form. On Page 299, 
shortly after the presentation of the first definition of linear function, it says:  

You can sometimes identify a linear function by looking in a table or a list of ordered pairs. In a linear 
function, a constant change in x corresponds to a constant change in y.  

Again, there is no mention here or elsewhere in the text as to how this property is entailed from 
the text’s (initial) definition of linear function. Instead, the property is followed by tables of 
ordered pairs and graphs whose purpose is to demonstrate that when the change is constant the 
corresponding order pairs lie on a straight line, and when the change is not constant the 
corresponding pairs do not lie on a straight line. This would have been adequate if it were 
followed with a justification as to why in a linear function a constant change in x  corresponds to 
a constant change in y .  

On Page 311, the text defines slope (“slope=change in y/change in x”) and later, on Page 320, 
it states:  

If 1 1( , )x y and 2 2( , )x y  are any two different points on a line, the slope of the line is 2 1

2 1

y ym
x x
−

=
−

.   

The critical question as to whether  is constant for any choice of m 1 1( , )x y and 2 2( , )x y  
satisfying the equation y mx b= +  is never justified, nor is it raised.  

The slope-intercept form appears on Page 335. The simple relationship between this form 
and the standard form is not established. Nowhere in the text is it shown how these two forms are 
equivalent. The change of forms is done in particular cases, where the coefficients are particular 
numbers—in most cases the coefficients are integers. For example, the point-slope form is given 
on Page 342. Even in this simple case where the form can be derived straightforwardly from the 

equation 1

1

y ym
x x
−

=
−

, the text resorts to a special case ( 13
2

y
x
−

=
−

) and generalizes from it the 

form 1 1( )y y m x x− = − .     
Consistently, the text avoids dealing with abstract concepts and mathematical 

justifications. Sadly, the text seems to welcome non-mathematical behaviors by students. On 
Page 304, a blurb tells how an (actual) student finds the intercepts of a linear function: 

I use the “cover-up” method to find intercepts. … If I have 4 3 1x y 2− = : First, I cover 4x  and solve the 

equation I can still see.   3 1y− = 2 4y = − . [The x-intercept is found in a similar way by 
covering the 3y− .] 
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This non-mathematical reasoning would have been tolerable if it were followed with an 
explanation of the student’s method. Astonishingly, even the Teacher’s Edition does not alert the 
teacher to counter this method with correct explanation. On the next page (p. 305), the intercepts 
of the line  are computed correctly by substituting zero for x to find the y-intercept, 
and zero for y to find the x-intercept. However, no connection is made between this correct 
method and the student’s method.  

2 4x y− = 8

Finally, two other important theorems are stated but no justification is given. These are: 
Two different nonvertical lines are parallel if and only if they have the same slope. (p. 349) 
Two different nonvertical lines are perpendicular if and only if the product of their slopes is -1. (p. 351).  

4.1 Forms of Quadratic Functions 
A2.3.A  Translate between the standard form of a quadratic function, the vertex form, and the 

factored form; graph and interpret the meaning of each form. 
A2.1.C Solve problems that can be represented by quadratic functions, equations, and inequalities. 

The material in Holt that is relevant to Standards A2.3.A and A2.1.C appears in Algebra 2 
(Chapters 5). As in the case of linear functions, the text’s approach to quadratics is 
mathematically inadequate. Its treatment consists mainly of rules without mathematical 
justifications. Students who learn to solve the problems in the text will do so with little or no 
understanding of what they are doing. In addition, the text consistently avoids dealing with 
general forms of functions and equations and deals, instead, with particular cases.   

The definition of quadratic function is in Lesson 5-1 (Algebra 2, p. 315):  
A quadratic function is a function that can be written in the form 2( ) ( )f x a x h k= − +  ( ). 0a ≠

On Page 323, it is shown that the function 2( )f x x=  is even ( ( ) ( )f x f x= − ) and so it is 
symmetric about the y-axis. On Page 316, the text indicates: 

You can also graph quadratic functions by applying transformations to the parent function 2( )f x x= . 
Transforming quadratic functions is similar to transforming linear function (Lesson 2-4). 

Following this, the text shows how to apply transformation of translations, stretching, and 
compressing on the parent function 2( )f x x=  to graph functions of the f

( )

orm
2( )f x entially, this is all what is needed to establish symmetry. Unfortunate

Lesson 2-4 on transformations of graph, the basis for the lesson on symmetry (Lesson 5-1) is 
devoid of mathematical reasoning. Here are a few examples of the rules stated without sufficien
mathematical explanation (pp. 134-135): 

a x h k= − + . Pot ly, 

t 

( ) ( )f x f x h→ − ,  moves right 0h > 0h <  moves left  

( ) ( )f x f x→ + k 0k >,  moves up 0k <  moves down  

1( ) ( )f x f x
b

→ ,  stretches away from the y-axis. 1b > 0 b 1< <  compresses forward the y-axis   

( ) ( )f x a f x→ ⋅ ,  stretches away from the x-axis. 1a > 0 a 1< <  compresses forward the x-axis   
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One would expect that the text would make use of its material on functions (Chapter 4 in 
Algebra 1 and Chapter 1 in Algebra 2) to provide meaningful explanations to these rules. 
Unfortunately, this is not done.  

Properties needed to graph quadratic functions are stated on Page 324 without 
justification: 

For 2( )f x ax bx= + + c , where a , b , and c  are real numbers and 0a ≠ , the parabola has these 
properties: 
The parabola opens upward if  and downward if0a > 0a < . 
The axis of symmetry is the vertical line / 2x b a= −  [see discussion above on this issue]. 
The vertex is the point . ( / 2 , ( / 2 )b a f b a− − )

0
The solution of quadratic equations by factoring is shown only through particular cases. 

For example, on Page 334, the equation 2 8 12x x− + =  is transformed into the e
( 2)(x x− the students “Find factors of 12 that add to -8” without any explanati
theorem on factorization of quadratic functions is neither proved nor stated.  

quation
0  telling on. The 

0

6)− = ,

The translations between the vertex form and standard form of the quadratic function is 
done in general terms (p. 342 and p. 356)—a rare phenomenon in this text. 

Quadratic inequalities (with one variable) appear in Lesson 5-7 (Algebra 2, p. 366). A 
textbook for which mathematical reasoning is a central objective would use quadratic 
inequalities to apply all what is learned about quadratic functions and quadratic equations. For 
example, the graph of a quadratic function together with information about its zeros provides the 
basis for solving the corresponding quadratic inequality. The factorization of a quadratic function 
into a product of linear functions can be used to solve the corresponding quadratic inequality by 
considering different cases and applying logical rules involving “or” and “and.” None of this is 
done in the text. Instead, the text presents an example (p. 368) of how to solve a quadratic 
inequality by applying three ready-made steps: To solve the inequality 2 4 1x x− + > , do the 
following: 

Step 1: Write the related equation  2 4 1x x 0− + =   
Step 2: Solve the equation by factorization: ( 5)( 1x x )− + =0, 5x =  or 1x = −  [and accordingly] 

divide the number line into three intervals: 1x < , 1 5x− < < , and 5x > . 
Step 3:  Test an x-value in each interval. [The values 2x = − , 0x = , and  are tried in the 

corresponding intervals, from which the solution to the inequality is determined]  
6x =

Students who manage to remember these three steps, along the numerous mechanical procedures 
in the text, may solve the assigned problems correctly, but will do so mindlessly, without any 
adequate understanding of what they are doing. The concern is not that the text divided the task 
into steps; rather, the concern is the lack of reasoning, of a mathematical rationale for the steps. 
For example: Why is the number-line partitioned into three intervals? Why is testing isolated 
values in each interval sufficient to determine the solution set of the inequality?   

4.3 Geometry 
G.3.A Know, explain, and apply basic postulates and theorems about triangles and the special lines, 
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line segments, and rays associated with a triangle. 
The material in Holt that is relevant to Standards G.3.A appears in Geometry (Chapters 3 

and 4). Section 3-1 (p. 146) starts with definitions and illustrations of basic terms such as parallel 
lines, parallel planes, and angle pairs formed by a transversal. Section 3-2 (p. 155) starts with the 
Corresponding Angles Postulate (“If two parallel lines are cut by a transversal, then the pairs of 
corresponding angles are congruent,” p. 155). This is followed by practice problems on how the 
postulate is used to compute different angles.  

Section 3-3 (p. 163) starts with the Converse of the Corresponding Angles Postulate (“If 
two coplanar lines are cut by a transversal so that a pair of corresponding angles are congruent, then the two lines 
are parallel,” p. 162). This postulate is then followed, almost immediately, by the Parallel Postulate 
(“Through a point P not on line l, there is exactly one line parallel to l,” p. 163).  Following this we find the 
following statement: 

The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel 
Postulate guarantees that for any line l, you can always construct a parallel line through a point that is not 
on l. 

On the same page (p. 163), the text shows how to construct the parallel line by constructing 
congruent angles, and in the Teacher's Edition it says explicitly: “we constructed congruent 
corresponding angles.” Congruence, however, appears later, in Chapter 4. So there is a confusion 
here as to what guarantees the construction of the parallel lines: congruence or the Parallel 
Postulate?  Assuming the former, since it says so explicitly in the Teacher’s addition, there are 
two structural problems: The first problem is that the existence of a parallel line through a point 
P that is not on l is guaranteed by the Converse of the Corresponding Angles Postulate, not by 
the Parallel Postulate; the latter guarantees that such a line is unique. The second problem is that 
the Parallel Postulate—that there is a unique parallel—is not a postulate here since it is derivable 
(through a simple proof by contradiction) from the preceding Corresponding Angles Postulate. 

The first, obvious concern in this presentation is the lack of mathematical accuracy. The 
second concern is that in this presentation the text avoids dealing with the important ideas of 
“existence” versus “uniqueness” and the distinction between a “postulate” and a “theorem.” Another—
though minor—issue is that the statement “The Converse of the Corresponding Angles Postulate is used to 
construct parallel lines” is not completely accurate. The construction of parallel lines involves the 
duplication of an angle, and the Converse of the Corresponding Angles Postulate guarantees that 
this construction results in parallel lines.  

Lastly, the sequencing of the geometric topics in the text, while mathematically legitimate, 
deprives the students of the opportunity to deal with important mathematical ideas. I have 
already mentioned the sequencing of the three postulates in Section 3-2 and 3-3. While there is 
no circular reasoning here, one would expect that when an angle is duplicated to construct 
parallel lines (p. 163) the students and teachers are alerted that this construction requires 
justification, and that such a justification will appear later in the text. The same concern applies 
to the construction of a perpendicular bisector of a segment (p. 172).   

Uniqueness of perpendicularity is critically needed for the definition of “distance from a 
point to a line” (p. 172) but it is neither proved nor stated. 
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The development that leads up to the proof of the Triangle Sum Theorem (Section 4-2) is 
interrupted by two sections on analytic geometry (Sections 3-5 and 3-6). In the process of 
developing a deductive structure for synthetic geometry, the students are introduced to a “foreign 
object” which does not belong to the development of this structure. Furthermore, these sections 
(3-5 and 3-6) include important theorems without proofs. The first theorem is the Parallel Lines 
Theorem:  

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two 
vertical lines are parallel. 

This theorem could be proved by using material already presented in the text; specifically, by 
using the material on systems of equations, it can be (easily) shown that two linear equations 

1 1y m x b= + and 2 2y m x b= + intersect if and only if 1m m2≠ . The second theorem without proof 
is the Perpendicular Lines Theorem: 

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. 
Vertical and horizontal lines are perpendicular.” (p. 184) 

This theorem can be proved by using congruence, so the text could have said so and proved later, 
or waited one more chapter to present it with proof. 

4.4 Summary 
Overall, the text’s approach to linear functions and quadratic functions is mathematically 

unsound. It amounts to a set of rules without mathematical justifications. In this approach 
students are deprived from learning to reason logically. Students who learn to solve the problems 
in the text will do so with little or no understanding of what they are doing. Furthermore, the text 
consistently avoids dealing with general forms of functions and equations, and resorts, instead, to 
generalize from particular cases. In addition, the text seems to encourage non-mathematical 
behaviors by students. Many of the facts presented in Algebra 1 are repeated in Algebra 2 in the 
same manner, without proper justification and without refinement toward more abstract 
treatments. The material in Algebra 2, where one would expect a more advanced treatment of the 
content taught, remains mathematically inadequate. 

The development of the material on parallel lines that leads up to the proof of the 
Triangle Sum Theorem does not include apparent circular reasoning. The sequencing of the 
material, however, results in the loss of important mathematical ideas. 

5. Conclusions 

The examination focused on five standards related to forms of linear functions and 
equations, forms of quadratic functions and equations, and parallel lines and the Triangle Sum 
Theorem. The body of the instructional material was examined with respect to three main 
criteria: (a) mathematical justification, (b) symbolism and structure, and (c) language. As can be 
seen in the chart below, none of the programs was found mathematically sound on the first two 
criteria. The  in Holt on these criteria in geometry is better characterized as the least 
mathematically unsound. With the exception of the Glencoe Program, which severely misuses 
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mathematical language in algebra and does not adequately distinguish between theorems and 
postulates in geometry, the language used by the rest of the programs is mathematically sound. 

  
 Mathematical 

Justification  
Symbolism and 

Structure 
Language 

  Al  Alge etry Algebra Geometry gebra Geometry
 

bra Geom

Core-Plus  —  —  —  —  +  + 
Discovering —  —  —  —  +  + 
Glencoe —  —  —  —  —   
Holt  —    —    +  + 

Key 
+ Mathematically sound 

 M atical dness ts mini  standaathem  soun mee mum rd  
— M atical soundathem ly un  

 
Two additional aspects of the programs were examined: (d) the problems used for 

practice and internalizati  o ht and (e) the way new concepts are introduced. 
Regarding aspect (d), the a  a relatively large number 
of non-trivial, multi-step li garding aspect (e), the examination addressed 
the natu  the problems or activities used to mathematically necessitate new concepts. None 
of the p were 

on f the material taug
 ex mination addressed only the presence of
 ho stic problems, and re

re of
rograms was found satisfactory on aspect (d), and only Core-Plus and Discovering 

found satisfactory on aspect (e).  
Although the number of topics examined is limited, these topics are central to high 

school mathematics and beyond. The four programs failed to convey critical mathematical 
concepts and ideas that should and can be within reach for high school students.  
                                                      

i  The four programs were examined independently by two reviewers. The second reviewer was Professor 
W. Stephen Wilson. His review can be found in http://www.math.jhu.edu/~wsw/ED/wahighschoolwsw.pdf. 

actice 

 
ents first learn to 

solve no

80 m/h and the truck at 60 m/h. When will they meet?  

they ofte
braic tools. For example, 

varying t
new seq
arithmet
(the sum  two given speeds) becomes less obvious. For example, for the case where the distance is 245 miles, 
the time that takes until the two vehicles meet must be between 1 and 2 hours, and so one might search through the 

ii Elsewhere I defined this notion more precisely and discussed its different forms in mathematical pr
(see Harel, 1998, 2008).  

iii To make this point clearer, it is worth presenting an alternative approach—one that is more likely to
intellectually necessitate algebraic tools to solve word problems. In this alternative approach, stud

n-trivial word problems with their current arithmetic tools. For example, they can reason about problems of 
the following kind directly, without any explicit use of variables. 

Towns A and B are 280 miles apart. At 12:00 PM, a car leaves A toward B, and a truck leaves B toward A. 
The car drives at 

Students can do so by, for example, reasoning as follow:  
After 1 hour, the car drives 80 miles and truck 60 miles. Together they drive 140 miles. In 2 hour, the car 
drives 160 miles and the truck 120 miles. Together they drive 280 miles. Therefore, they will meet at 2:00 
PM.  

Through this kind of reasoning, students develop the habit of building coherent images for the problems—a habit 
n lack. These problems can then be gradually modified—in context, as well as in quantities—so as to make 

necessitating the use of algethem harder to solve with arithmetic tools alone, whereby 
he distance between the two towns through the sequence of numbers, 420, 350, 245, and 309, results in a 

uence of problems with increasing degree of difficulty. Students still can solve these problems with their 
ic tools but the problems become harder as the relationship between the given distance and the quantity 140 
 of the
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values, 1 hour and 15 minutes (
?75 7580 60 245

60 60
⋅ + ⋅ = ), 1 hour and 30 minutes (

?90 9080 60 245
60 60
⋅ + ⋅ = ), 1 

hour and 45 minutes (
?105 10580 60 245

60 60
⋅ + ⋅ = ), and find that the last value is the time sought for. This activity

of varying the time needed can give rise to the concept of variable (or unknown) and, in turn, to the equation, 
80 60 140x x⋅ + ⋅ = . Granted, this is not the only approach to intellectually necessitate the use of algebraic tools 
for solving word problems. However, whatever approach is used, it is critical to give students ample opportunities 
to repeatedly reason about the problem arithmetic tools and to gra
new, algebraic tools. The goal is ld coherent mental represen

added value of this appr f computational fluency with numbers, especially fractions.   

 

s with their current dually lead them to incorporate 
 for students learn to bui tations for the quantities 

involved in the problem and to intellectually necessitating the use of equations to represent these relationships. An 
oach is the development o
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